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IN’I‘ROPUC'I‘ION
Problems tnvolving network analysis arise in many industrial contexts., For example,

interest often attaches to methods for characterizing the behavior of flrewatep"safety systems
in refinery operations. Flows and resulting pressures need to be ascegj.atffé'd under various
patterns of input and withdrawal. Under certain conditions sgg.ndard‘gg)proaches such as Hardy
Cross! inethods and extensions of the usual (}ausx;-SetdéT’igchniques, have been found difficult
or impossible to apply in mlyzing‘éuai syétems. The nonlinear character of the branch head
losses may Cause lack of convergence of the solutions or require recourse to supplement
analypes of a complicated character. :
‘;Certaln kinds of network problems hLave proved amenable tc the usual formuiaticas of

linear programmingZ Here--is-proposed-to-utiftze a semewhat different appl‘&:ii:h}ﬁT otder to
- ] =
provide a more general methcd £ attack and to—do-Be-Inoreover; in-a way whish provides

access to the methods desertoed-in-{4} for treiiing nonlinear problems as well. The essentiai
ideas are as foliows: (1) resuitement of the original problem interms of minimizing a sepa-
rable convex(fu'nctional sgxbjegt to a system of linear equations e'tgpresslng the conservation of
current entering and leaving nodes by bx'anches;r(z} ézmzat%)n c‘f'plecewise linear functionals
to secure suitable approximations to the convex functionai%;gi(a) using the "B?unded variables
techmques“‘-f’gf linear programming in order to avoid expanding the number of vectors in an

= #Nianuscript received December 1957.
YThe authors are indebtéd to W. P. Drews of Esso Research and Engineering Co. and Paul

Harthorn and Norman J. Driebeck of Creole and Lago Petroleum Cos., respectively, for back-
ground and advice.

The resecarchunderlyingthis paper was undertaken for the project Methodological Aspects
of Management Research under contract with The Office of Naval Research; Contract Nonr -
Tfﬁogﬁﬁ%‘ﬁrd]}ci NE 047 016; report issued Auguat 1957,

See [1]
2See, e.g., W. Prager, [9] and the references cited therein,
3By ''separable convex" function is meant one which is the sum of convex functions of one

variable each. .
4].e., it is assumed that leakages, if any, may be ignored.

5ct. [8].
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“active” basis and also to avold expanding *he number of different coefficient vectors which
require explicit expression. The resuiting problem 1s thereby converted to an equivalent one
which may be called the polygonai approximation to convex programming over the *Incidence
matrix”of a connected network. Special properties are then secured which simplify analysis
and representation, and provide a basts {oir systematic elaboralicn.

e
INCIDENCE MATRLY,

In engineering analyses of networks, it 1s customary to designate one of the two pos-
sible directions of flow in a branch as positive. The current is then nllowed to have either
positlve or negative values. Positivity and negativity are then respectively associated with
flow in the positive directin: or its opposite.

Topological analysis utilizes instead the closel y r=lated notion of "incidence" of
branches (or links) on nodes. Thus, the convention may be . *uted, for example, that a branch
entering a node, 18 positively incident on that node. 2 branch leaving a node is negattvely inci-
dent on it, and a branch which does not meet a node is not incident on it. The incidences of
branches on nodes may then be described by an incidence matrix consisting of numbers GU

representing the incidence of the jth branch on the ith node as follows:

1) branch ! is positively incident on node 1.
(l) (lj X -1 " " j " negauvely (3] " A
O " 12 j T “Ot

L 1" 1" 1
.

\ -
Since each branch is incident on precisely two nodes each column of the matrix will

contain precisely two nonzero entries—a plus one and a minus one. If q, designates the cur-
rent in the jth branch the net influx of current into the ith node 1s evidently

(2) Z bl |
;U

where | ranges over all branches of the network. If the efflux out of the network at this node
is E1 then this conservation of current at nodes (Kirchhoff's node law) may be written as

(3) Z:fij qj=El, l=l, 2,.

Thus, to express the conservation conditions, it is necessary only to form the incidence matrix

column by column,

BASES OF COLUMN VECTORS FOR AN INCIDENCE MATRIX
As stated in (1) above, each column vector of such a matrix contains a plus one and a

minus one and is uniquely assoclated with a branch of the network. The plus one corresponds

to the node at the head of the branch and the minus one corresponds to the node at the tail of

the branch. A basis of cclumn vectors of the matrix 1s a collection of column vectors (or
branches) such that, (1) every other column vector can be expressed as a linear combination

of this collection, and (2) the number of vectors in this collection is the least with which this
task can be accomplished. Clearly, a basis must include at least one vector incident (posi-
tively or negatively) on each node of the system. Otherwise, it would not be possible to express
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interms of the basis) a vector associated with a branch tncident on that node. To express a
column vector (branch or nnde pair) in terms of the basis, it ia necessary only to start with
the head node of this branch and trace a path along branches associated with the basis to the
tail node of this branch. The corresponding algebraic process consists of adding or subtract-
ing the basis vectors assoclated with the branches thus traversed,

Consider, for example, the process of moving from one branch to another across a
node. Both branches are incident on this node. If both have the same inctdence, subtricting
them will give a column vector with precisely one "plus one" and one "minus one" assoclated
with the two end (or exterior) nodes of these two branches: {f the branches are opporitely
incident on a node, an addition will be performed to attain a vector corresponding to tire end
nodes. Thus, traversal of the path from node to node is assoclated with addition and suhtrac-
tion of vectors so that as any particular node in the traversal is reached the cumulant ve-tor
has nonzero entries (of opposite sign and unit magnitude) corresponding precisely to the e1 d
nodes of the completed portion of the path.

The collection of branches corresponding to the dasis can contain no closed path (or
cycle). Otherwise it would be possible to express one of the branches in the cycle in terms of
the others by the process just described. Every expression containing the vector of this
branch could then be replaced by an expression not containing it. The supposed basis would
then contain more than the minimum number of vectors required and would therefore not be a
basis.

A connected system of branches and nodes containing no cycle is, in topology, called a
"tree.” Thus, a basis for the incidence matrix of a connected network consists of the column
vectors assoclated with a tree which contains every node of the network. An easy method is
thereby provided both for securing a basis and for expressing all vectors in terms of it.

DETERMINING THE "EVALUATORS"
The "evaluators'—the w vectorb—-may be determined in a manner similar to the way

in whick the "row-column numbers' are determined in distribution type models of linear
programming.” In the model which s beirg developed w, 18 associated with the 1th equation.
The value of any one such w, may be selected arbitrarily because the system of equations (3)
has the same degree of linear dependence as the standard distribution model.? The other Wy
are then quickly determined since each basis branch consists of a node pair and the calculations
are initiated at node 1 and proceed away from it to all the other nodes of tiie network along the

appropriate basis branches (hence column vectors).

EXTREMAL PRINCIPLE AND THE FUNCTIONAL
In the case of flow problems to be considered here, it is assumed that to each branch ]

there corresponds a resistance function ry (q’) such that

6Any solution of WTB = cT, where B is the basis at the current iteration. See (7)., for

example,
In the following discussion some familiarity with linear programming is assumed. See,

e.g., [3] and [5] for elaboration.
8This may be seen from the fact that the number of branches in a basis tree is one lens

than the number of nodea. In physical terms this corresponds to the fact that the voltage dif-

ferences rather than absolute voltages are determined by the currents in a network,
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is a convex function of q’ . For example, In the firewater system problem

|k
r,(q) @, g (@ ~iq , k>1
and
(5) . ke 1
3 - |
R’ (q) “urq |4

The convex programming problem, or extremal principle, characterizing the network
flow is

~

min. )f R, (qy)
(6) subject to

%‘i] Gy = S 10

It may be established? that any optimal solution to this problem automatically satisfies the
"head-loss," or Kirchhoff cycle conditions—viz, the algebraic sum of the head-losses around
any clnsed loop consisting entirely of current carrying branches is zero. This principle thus
achieves an essential simplification of the problem because in arriving at a solution it is only
necessary to consider indlvidual branches with the higily nonlinear loop conditions being
transferred to the functional'? in a much less recondiie form.

APPROXIMATION OF THE FUNCTIONAL
To any desired degree of approximation each Rj (q) may be replaced by a piecewise
linear function o that the total, )~ Rj (qj), may also be approxtmated.!! The resulting problem

may then be replaced by an equivalent linear programming problem using the bounded variables
techniques in order (a) to avoid proliferation of the number of vectors in the active basis and
(b) to avoid increase in the number of structurally distinct vectors.!?

9The authors wish to thank the referee for stimulating 1 sufficiently general proof of this
(which will be published elsewhere) based on exiending the Kuhn-Tucker theorem for this situa-
tion. He pointed out that Duffin, Birkhoff, and Diaz required rj(q) continuous and sirictly
increasing in their proofs.

01t should be noted that the objective here is to obtain a simulation and that this is accom-
plisiicd by optimization withresulting gains in efficiencyfor the desired simulaticn, For mathe-
matical proofs of this principle under heavier restrictions than are necessary, see [10] and
[11).

] 11Additional researchwhich eliminates the need for this approximation step will be reported
in a subsequent paper. The method to be reported consists esaentially of implicit refinement to
the limit of the approximation process and of short-hand rules so that no approximation needs
to be dealt with explicitly, This, of course, replaces the linecar iterations with a nonlinear
counterpart,

125ee [4) for a general description of this method and others for approximating a nonlinear
functional by a piecewise linear one.
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Then, the approximating problem to (8) assumes the form!2

- 8 + + - -

subject to

(8) b1 LA Ag e
i “4j [Lk‘( e T Ok ) [T

where i, j, and k are each assigned their respective ranges.

METHODS OF COMPUTATION AND ILLUSTRATION

The method of computation on the network graph may be summarized as follows (the
analogous steps on a tableau w111 be clear from the illustration). One starts with 2 soiution of
the nade conditions z2amitting only branches which form a basis. The w-vector is then calcu-
lated using the active basis, and from it, the Z, is simply Wy - @ where node h is the
"Lead" of branch j and node t is its "tail" as determined by its orientation. These are com-
pared as usual with the cj (in equation (8) the pjk) to determine optimality or nonoptimality.
If nonoptimal the vector to ""come in" to the basis is expressed in terms of the active basia
simply by going from the tail to thre head of the come in branch on active basis branches.
Those branches whose orientation is opposite to this direction of travel wiil have their "cur-
rent” increased in the new solution, those with same orientation will have it decreaced. In
other words, the special structure of this problem is used to generate the information neces-
sary to a simplex (or dual) procedure at each stage rather than using the general algorithm
and storing additional information.

The example of Figure 1 may be used to provide a simple {llustration for the computa-
tional routine to be employed. In this Figure an influx of 10 units is being put into the system
at node 1 and effluxes of 2, 5, and 3 units, respectively, are being drawn from nodes 5, 7, and 9.
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Figure 1 - Network Graph

The coefficients (here constants) for the variables which enter into the functional are shown
inside the diagram opposite each arrowhead.!3 A physical analogy for these coefficients is
found in the resistances. or head losses, over these branches in the circuit which are here
assumed to be constants. The resistances are also assumed to be the same irrespective of the
direction of flow. 14 Finally the branch 2, § is assumed to be characterized by a resistance of
one up to 4 units of current and a resistance of two for greater currents. This can be visual-
{zed most easily by inserting two branctes between nodes 2 and 5, designating the first as 2, 5,
to indicate that it is limiled in the amount of flow it will admit and the second by 2, 5 to indicate
the absence of sich an upper bound on the possible values of the flows through this (the latter)
branch. The nbjective then is to characterize the current flows by minimizing the value of the
functional overall branches of the network, taking account of the fact that 2, 5 is limited to a
capacity of four units, as indicated by the value m alongside its arrowhead, and that further
flows along the branch will encounter the increased resistance associated with 2, 5.

Table 1 contains the corresponding incidence matrix with nodes entered in the stub and
branches at the head. Each column is composed of the values (l] as described in section 2,
above. The external influxes and effluxes for the system are noted at the right of the matrix in
the column labelled "stipulations.”” Each row of the matrix then represents an equation which
is a Kirchhoff node condition to describe the conservation of current. At the top of each branch
is a value, c,, to be entered into the functional and drawn from the amounts entered at the
arrcwheads on the branches of Figure 1.

Computation may proceed by means of either the Table or the Figure. For purposes of
exposition, both devices will be used.

First an active basis is selected. To guarantee that a basis is, in fact, selected it is
necessary, as previously described, only to choose branches in such a manner that all nodes
in the system are attained without loops. Hence computations may commence by selecting a

13In the actual computations, it 18 advisable to utilize different colors to distinguish between
these values, the programmead flows and the values for the @ vector.

141t weuld be possible to consider these resistances as different, depending on the direction
of flow. Uni-directional flow could then be assured by blocking out counter flows with heavy

resistance penalties.
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promising basis set for the purpose of mintmization. If this set is r.ot optimal, a series of
systematic iterations will secure such 2 aet in a finite number of stages.

The basis thus initially rhosen is indicated by the dots centered on the outside of the
selected branches. It consists of the following branches: 1. 2: 1 6,2 3,253, 4,5, 8,6, 7;
and 8, 9; as shownin Figure 1.5 This setofdots {s repeated directly below Table 1 in the first
row labelled '"Basis indicators." It designates the collection of column vectors which constitute
an active basis. Immediately below these dots the row labelled "Program' shows the (unique)
current flows which are readily ascertained from Figure 1 by reference to the branches in the
basis and the influxes and effluxes.

Note that 2, 5 and 2, 5 are linearly dependent. Hence, at most, one of these vectors may
enter Into a basis. The other elements of a Lasis having been chosen, the total amount of cur-
rent to flow between nodes 2 and 5 is uniquely determined. Since the objective is minimization,
the optimal choice consists of filling up each such set of branches in the order of successively
increasing c.'s. Thus, the flow of 5 between nodes 2 and 5 is allocated as follows: First as
much as possible of this flow is allocated to 2, 5. Whenever such a link is used to capacity
with overflow to one of its parallel links, such as 2, 5, it 1s not counted as part of an active
basis. 1® For this reason 2, 5 recelves a bar rather than a dot in the row of Table 1 labelled
""Baslis indicators," as well as alongside the program value 4 in Figure 1. The bar (replacing
the dot) indicates that this branch is at capacity (with overflow) and is, therefore, not in the
basis.

By virtue of the linear dependence of the Kirchhoff node conditions, exactly eight vectors
here constitute a basis. The above method of choosing between 2, 5 and 2, 5 resolves the ques-
tion of choice among links joining the same node palr, only one of which can be in an active
basis

To determine whether the programmed amounts are optimal, the methods of linear
programming are now applied. Values, w;, are determined, one for each node of the network,
as follows.!7 One such value may be chosen arbitrarily. Here the first such value, zero, is
selected at node 1, and entered to the left of this node (under the w component<) in Table 1.8
The remaining w components are now uniquely determined by the condition that each pair of
values w, and oy when multiplied by the corresponding elements of each basis vector and
summed, must egual tne value, Cj' located at the top of each such vector. Call the sum z
which results v om algebraically adding each pair of w's so that the condition to be satisfied is
z, = c,. Nouug that zero appears as wy opposite node 1 and that Cig = 5 it is apparent that
Wy = -5. Similarly, since 16" 2 it follows that We = -2 in order to obtain W) - we=1x0
+ (-1) (-2) = Z16=C16 = 2. Next, the value Wy = -8 i1s determined from Wy - Wy = z23=c23=3.
Since wg = -5 it is evident that wq = -(5+3), as shown, to achieve the desired equality.19

15The dotonbranch 5, 4 should be ignorcd at this stage. It enters at a subsequent iteration
when 3, 4 is eliminated, as will be explaineci wubsequentl v,

l6see [3]or [7].

171t may be helpful to regard these values as tentative node potentiale in terms of which
the flowa are determined.

I8Note that these values may also be determined directly from Figure |I. Thus, a value of
zerc is inserted at node 1. When c]2 iz subtracted from this amount, the value of w2 at node 2
is secured Similarly, the value -8 for node 3 is obtained by subtracting c,3 from wj, and
80 on,
I9Nots that these values may also be determined directly from Figure 1. Thus, a value of
zero is inserted at node 1. When c|2 = 5 is aubtracted from this amount the value W) = -5 at
node 2 is secured. Similarly the value w3 = -8 for node 3 is obtained by subtracting c,43 from

W, and ~o on,
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Continuing in this fashion utilizing only vectors designated by a dot (and therefore in the basis)
the remaining vaiues o the left hand stub of Tabie 1 are thereby determined 2
Ail vectors in the active basis, therefore, necessarily have z, - (‘, = 0. If the program

is optimal thnse vectors which are not in the active basis have values 'zjl - c, 0*! and
bounded variables, such as ‘he value for 2, 5. will have values 7.j - (‘J. v}
If anv value is located which does not meet these conditions, it is necessary to {terate

This vector {s therefore brought into the basis,

further. In the present! instance ‘ 254 Ceyq
as indicated by the upward pointing arrow just below the first row of "z values' of Table 1.
To determine which vector is to be eliminated, recourse may be had to Figure 1. Since 5, 4 is
being brought {nto the basis, the node ut 4 can be secured via this route. That is, the vector
. 4 may be stated in terms of the basis by tracing the unique path along the basis tree either
from head to tail or tail to head. Thus, 5, 4 utilizes 5, 2: 2, 3: and 3, 4. The first is accorded
4 minus sign as the negative of 2, 5 and the latter are accorded positive signs. Only the latter
(the ones accorded positive signs) are considered for purposes of designating the vector to be
eliminated from the hasis when 5, 4 s inserted. By recourse to standard procedures, including
known methods of resolving degeneracy,22 the vector 3, 4 is eliminated from the basis and 5, 4
inserted instead.

Crossiag out the programmed value of zevo ajung 3, 4 and inserting it instead at 5, 4,
all other flows are left undisturbed at their previous values. Also, the only value of wy which
requires alteration, is the one at node 4. Starting with We = -7 and subtracting Cqsq = 3 from

this amount, the new value wy = -10 is secured to replace the old one of -17, as shown in Fig-

ure 1.
The second row of dots in Table 1 indicates the new basis with the programmed amounts

entered directly belaow the dots. To check for optimality, all vectors not in the active basis are
evaluated as befcre. The test for optimality being successfully passed. as indicated by the
numbers in the 7 value row at the bottom of the Table, %’ the problem is sulved with the current
flows as indicated in the "program' row

The methods for convex programining over incidence matrices here developed, may be
generalired to what may be cailed matrices of incidence type with nonzero entries other than
+ 1. Specifically they may be considered as matrices for node conditions which generalize the
Kirchhoff node conditions in that the current in a particular branch is to be multiplied by a
number associated with the branch before entry into the node. Such extensions are important,
for Instance, in probiewms of accourding and financial analysis, and are vncountered even in very
simple cascs such as the ones described in [6], the further refinement of these methods24 to
the exact functions and involving nonlinear iteration s eps,2° s alsc important for dealing with
problems of risk and uncertainty. These topics will be treated in subsequent papers.25

20F,r a dizcussion of the theory underlying these procedures, see [3].
2lSince flows may be ‘n either direction, it 18 necessaryv either to use the absolute value of

z. or else to take account of the direction of flow. In links such as 2, 5, the direction of flow
must be considered, The z, which results from a negative flow, is simply the negative ey {oT
positive flow, Thus, it is unnecessary to carry two columns. In either case—positive or nega-

tive flow--on a vapacitated link thetrue z. must be greater than or equal tothe corresponding

22s0e {2]. =
231 e., 12 c; for all nonbasis vectors and z, ) foTlng s

245ee foctnote i1, page 234, supra, ’

t‘i:'l-‘.‘g.. A. Charnes and . E. LLemke, "Contin ¢ l.imit Methods in Mathematical Pro-

gramming," ONR Research Memc. No. l, Systems Research Gro.p, Northwestern University

{forthcoming}.
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